
New Halide Electrolytes for Solid State Batteries

The image shows the atomic crystal structure and Li⁺ migration pathways that enhance the Li-ion transport through the new halide solid electrolyte material.

H. Kwak, D. Han, J. Lyoo, J. Park, S. H. Jung, Y. Han, G. Kwon, H. Kim, S.-T. Hong, K.-W. Nam, Y. S. Jung. *Adv. Energy Mater.*, **11**, 2003190 (2021).

Work was performed in part at Brookhaven National Laboratory

☆ National Synchrotron Light Source II ।

Scientific Achievement

Scientists found new, cost-effective halide solid electrolytes for all-solid-state batteries that are free of rare-earth metals.

Significance and Impact

Halide solid electrolytes (superionic conductors) offer both excellent (electro)chemical stability and the ability to form good solid-solid contacts for solid-state Li batteries. Until now, the use of expensive metals has hindered their practical application.

Research Details

- Mechanochemically synthesized halide superionic conductors, Li_{2+v}Zr_{1-v}Fe_vCl₆, using inexpensive & abundant elements.
- Demonstrated the significantly improved ionic conductivity due to Fe³⁺ substitution.
- Combined structural analysis using the PDF beamline at NSLS-II with other tools to reveal the origin of the high ionic conductivity in new halide solid electrolytes.